Journal club

We discuss these papers on our weekly or biweekly journal club.


Motiwala, A., Soares, S., Atallah, B.V., Paton, J.J., and Machens, C.K. (2020). Dopamine responses reveal efficient coding of cognitive variables. BioRxiv 2020.05.20.100065.


Rubelowski, J.M., Menge, M., Distler, C., Rothermel, M., and Hoffmann, K.-P. (2013). Connections of the superior colliculus to shoulder muscles of the rat: a dual tracing study. Front. Neuroanat. 7.


Cregg, J.M., Leiras, R., Montalant, A., Wanken, P., Wickersham, I.R., and Kiehn, O. (2020). Brainstem neurons that command mammalian locomotor asymmetries. Nature Neuroscience 1–11.


Hirokawa, J., Vaughan, A., Masset, P., Ott, T., and Kepecs, A. (2019). Frontal cortex neuron types categorically encode single decision variables. Nature 576, 446–451.


Bolkan, S.S., Stujenske, J.M., Parnaudeau, S., Spellman, T.J., Rauffenbart, C., Abbas, A.I., Harris, A.Z., Gordon, J.A., and Kellendonk, C. (2017). Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci 20, 987–996.

Spellman, T., Rigotti, M., Ahmari, S.E., Fusi, S., Gogos, J.A., and Gordon, J.A. (2015). Hippocampal–prefrontal input supports spatial encoding in working memory. Nature 522, 309–314.


Horst, N.K., and Laubach, M. (2009). The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 164, 444–456.

Horst, N.K., and Laubach, M. (2012). Working with memory: evidence for a role for the medial prefrontal cortex in performance monitoring during spatial delayed alternation. Journal of Neurophysiology 108, 3276–3288.


Stachniak, T.J., Ghosh, A., and Sternson, S.M. (2014). Chemogenetic Synaptic Silencing of Neural Circuits Localizes a Hypothalamus→Midbrain Pathway for Feeding Behavior. Neuron 82, 797–808.


Gu, B.-M., Schmidt, R., and Berke, J.D. (2020). Globus pallidus dynamics reveal covert strategies for behavioral inhibition. BioRxiv 2020.03.03.975540.


Dolensek, N., Gehrlach, D.A., Klein, A.S., and Gogolla, N. (2020). Facial expressions of emotion states and their neuronal correlates in mice. Science 368, 89–94.


Franklin, T.B., Silva, B.A., Perova, Z., Marrone, L., Masferrer, M.E., Zhan, Y., Kaplan, A., Greetham, L., Verrechia, V., Halman, A., et al. (2017). Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci 20, 260–270.


Chapin, J.K., Moxon, K.A., Markowitz, R.S., and Nicolelis, M.A.L. (1999). Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience 2, 664–670.

Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., and Nicolelis, M.A.L. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365.


(Jiaming Cao)

P.P. Gao, J.H. Goodman, T.C. Sacktor, J.T. Francis, Persistent Increases of PKMζ in Sensorimotor Cortex Maintain Procedural Long-Term Memory Storage, IScience. 5 (2018) 90–98.

(Hanbo Wang)

Steffen B. E. Wolff, Raymond Ko, Bence P. Ölveczky, Distinct roles for motor cortical and thalamic inputs to striatum during motor learning and execution, bioRxiv 825810; doi:

(This paper follows up on their previous work [Kawai Neuron 2015] and is truly amazing. They made a surprising and interesting discovery on the necessary role of thalamostriatal connections in movement sequence generation after animals learned the motor task. Go read it and start to appreciate the beautiful combination of quantitative behavioral analysis and neural-circuit perturbation techniques. If the goal of neuroscience is to understand how the brain works, this is a good example of the kind of work towards that goal.)


(Qiang Zheng)

H. Li, D. Pullmann, T.C. Jhou, Valence-encoding in the lateral habenula arises from the entopeduncular region, ELife. 8 (2019) e41223.


(Jiaming Cao)

S. Aoki, J.B. Smith, H. Li, X. Yan, M. Igarashi, P. Coulon, J.R. Wickens, T.J. Ruigrok, X. Jin, An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway, ELife. 8 (2019) e49995.

(This paper is built on an amazing array of molecular and genetic tools, showcasing their multiplexed approaches to pinpoint the inputs to neurons that project to a defined target region. Most importantly, it lays out the circuit blueprint underlying the communication between cognitive and motor centers in the brain)


(Yu Chen)

B. Porter, K.L. Hillman, A Novel Weight Lifting Task for Investigating Effort and Persistence in Rats, Front. Behav. Neurosci. 13 (2019) 275.


(Hanbo Wang)

J.E. Markowitz, W.F. Gillis, C.C. Beron, S.Q. Neufeld, K. Robertson, N.D. Bhagat, R.E. Peterson, E. Peterson, M. Hyun, S.W. Linderman, B.L. Sabatini, S.R. Datta, The Striatum Organizes 3D Behavior via Moment-to-Moment Action Selection, Cell. 174 (2018) 44-58.e17.


(Junbo Shen)

A. Mathis, P. Mamidanna, K.M. Cury, T. Abe, V.N. Murthy, M.W. Mathis, M. Bethge, DeepLabCut: markerless pose estimation of user-defined body parts with deep learning, Nat Neurosci. 21 (2018) 1281–1289.


(Qiang Zheng)

C.A. Siciliano, H. Noamany, C.-J. Chang, A.R. Brown, X. Chen, D. Leible, J.J. Lee, J. Wang, A.N. Vernon, C.M. Vander Weele, E.Y. Kimchi, M. Heiman, K.M. Tye, A cortical-brainstem circuit predicts and governs compulsive alcohol drinking, Science. 366 (2019) 1008–1012.

(Hanbo Wang)

B.A. Bari, C.D. Grossman, E.E. Lubin, A.E. Rajagopalan, J.I. Cressy, J.Y. Cohen, Stable Representations of Decision Variables for Flexible Behavior, Neuron. 103 (2019) 922-933.e7.


(Qiang Zheng & Xiaojing Sun)

R.P. Vertes, Differential projections of the infralimbic and prelimbic cortex in the rat, Synapse. 51 (2004) 32–58.

(Jiaming Cao)

R.P. Vertes, Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens, J. Comp. Neurol. 442 (2002) 163–187.

Previous JC papers

M. Murakami, H. Shteingart, Y. Loewenstein, Z.F. Mainen, Distinct Sources of Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex, Neuron. 94 (2017) 908-919.e7.

M. Murakami, M.I. Vicente, G.M. Costa, Z.F. Mainen, Neural antecedents of self-initiated actions in secondary motor cortex, Nat. Neurosci. 17 (2014) 1574–1582.

P. Janssen, M.N. Shadlen, A representation of the hazard rate of elapsed time in macaque area LIP, Nat Neurosci. 8 (2005) 234–241.

M.I. Leon, M.N. Shadlen, Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque, Neuron. 38 (2003) 317–327.

R. Kawai, T. Markman, R. Poddar, R. Ko, A.L. Fantana, A.K. Dhawale, A.R. Kampff, B.P. Ölveczky, Motor cortex is required for learning but not for executing a motor skill, Neuron. 86 (2015) 800–812.

T.M. Otchy, S.B.E. Wolff, J.Y. Rhee, C. Pehlevan, R. Kawai, A. Kempf, S.M.H. Gobes, B.P. Ölveczky, Acute off-target effects of neural circuit manipulations, Nature. 528 (2015) 358–363.

J. Kim, J.-W. Ghim, J.H. Lee, M.W. Jung, Neural correlates of interval timing in rodent prefrontal cortex, J. Neurosci. 33 (2013) 13834–13847.

J. Kim, A.H. Jung, J. Byun, S. Jo, M.W. Jung, Inactivation of medial prefrontal cortex impairs time interval discrimination in rats, Front Behav Neurosci. 3 (2009) 38.

S. Soares, B.V. Atallah, J.J. Paton, Midbrain dopamine neurons control judgment of time, Science. 354 (2016) 1273–1277.

C.D. Howard, H. Li, C.E. Geddes, X. Jin, Dynamic Nigrostriatal Dopamine Biases Action Selection, Neuron. 93 (2017) 1436-1450.e8.